Momentum Transfer within Canopies

نویسنده

  • CHUIXIANG YI
چکیده

To understand the basic characteristics of the observed S-shaped wind profile and the exponential flux profile within forest canopies, three hypotheses are postulated. The relationship between these fundamental profiles is well established by combining the postulated hypotheses with momentum equations. Robust agreements between theoretical predictions and observations indicate that the nature of momentum transfer within canopies can be well understood by combining the postulated hypotheses and momentum equations. The exponential Reynolds stress profiles were successfully predicted by the leaf area index (LAI) profile alone. The characteristics of the S-shaped wind profile were theoretically explained by the plant morphology and local drag coefficient distribution. Predictions of maximum drag coefficient were located around the maximum leaf area level for most forest canopies but lower than the maximum leaf area level for a corn canopy. A universal relationship of the Reynolds stress between the top and bottom of the canopy is predicted for all canopies. This universal relationship can be used to understand what percentage of the Reynolds stress at the top of canopy is absorbed by the whole canopy layer from the observed LAI values alone. All of these predictions are consistent with the conclusions from dimensional analysis and satisfy the continuity requirement of Reynolds stress, mean wind speed, and local drag coefficient at the top of canopy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Contribution of Dispersive Fluxes to Momentum Transfer within Canopies

Dispersive flux terms are formed when the time-averaged mean momentum equation is spatially averaged within the canopy volume. These fluxes represent a contribution to momentum transfer arising from spatial correlations of the time-averaged velocity components within a horizontal plane embedded in the canopy sublayer (CSL). Their relative importance to CSL momentum transfer is commonly neglecte...

متن کامل

Interaction between flow, transport and vegetation spatial structure

This paper summarizes recent advances in vegetation hydrodynamics and uses the new concepts to explore not only how vegetation impacts flow and transport, but also how flow feedbacks can influence vegetation spatial structure. Sparse and dense submerged canopies are defined based on the relative contribution of turbulent stress and canopy drag to the momentum balance. In sparse canopies turbule...

متن کامل

Momentum Transfer Rate Constants for Collision of Cl-with Trans-Dichloroethylene and Para-Difluorobenzene

A classical theory is developed which calculates the momentum transfer rate constant between an ion and a non-polar molecule. The model takes into consideration the effect of diffraction outside the capture limit on the rate constants. The theory is used to calculate momentum transfer rate constant for Cl- with trans-dichloroethylene and para-difluorobenzene. Theoretical results ...

متن کامل

Natural Convection Heat Transfer within Octagonal Enclosure

The problem of steady, laminar and incompressible natural convection flow in an octagonalenclosure was studied. In this investigation, two horizontal walls were maintained at a constant hightemperature, two vertical walls were kept at a constant low temperature and all inclined walls wereconsidered adiabatic. The enclosure was assumed to be filled with a Bousinessq fluid. The studyincludes comp...

متن کامل

Influence of small-scale structure on radiative transfer and photosynthesis in vegetation canopies

The use of Beer's law to describe the radiation regime in plant canopies is valid for a sufficiently large volume filled densely with phytoelements. This set a limit to the scale at which models, based on Beer's law, can account for structural features of vegetation canopies and provide an adequate prediction of the radiation regime. The aim of our paper is to analyze radiation interaction in v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008